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An approach based on solution of complete averaged Navier−Stokes equations in vortex chambers
using a low-Reynolds k−ε model of turbulence is considered. The problem is solved in the variables
vortex, stream function, and circular component of the velocity. The method of oriented pseudocon-
vection is used for problems of the dynamics of twisted flows. The method allows one to retain sec-
ond order of accuracy of convective terms and provide stability of the solution for rather high
Reynolds numbers. The problem of formulation of boundary conditions of second order of accuracy
for vorticity on a solid wall at angular points is considered. An analysis of the results obtained shows
that numerical calculations within the framework of the considered model of turbulence agree with
experimental data rather well.

Twisted flows possess two obvious properties − substantial predominance of inertial forces over
gravitational ones and increase in the time of particle residence in vortex chambers. The structures of many
devices employing twisted flows have not been changed greatly in recent times. However, problems still exist
in designing new apparatus as applied to powder metallurgy and chemical processes where the separation of
particles, gas scrubbing, and combustion would be efficient.

An analysis of general averaged Reynolds equations is the most promising approach to theoretical
investigation of the hydrodynamics of twisted flows, although their solution involves great difficulties. These
difficulties arise due to the fact that the working regions of cyclone chambers have complex geometric shapes
where vortex formations, recirculation zones, and reverse flows appear in motion of a gas flow.

According to experiments, in vortex chambers the velocity of the gas is small compared to the veloc-
ity of sound, while the density and viscosity virtually do not change over the cross section; therefore an in-
compressible flow with constant molecular viscosity is considered. It is known that three-dimensional flows
in centrifugal apparatus change to axisymmetric ones rather quickly; therefore the initial portion can be ne-
glected. In this case, ∂ ⁄ ∂ϕ = 0 and the system of complete averaged differential Navier−Stokes equations for
a cylindrical coordinate system is solved in the variables vorticity Ω, stream function Σ, and circular compo-
nent of the velocity Uϕ. This approach provides identical fulfillment of the continuity equation; moreover, the
number of equations investigated decreases. The equations for the variables Ω, Ψ, and Uϕ can be represented
in the form [1]
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To close system (1) we used the two-parameter low-Reynolds k−ε model of turbulence of
Jones−Launder [2]; this model consists of the equation of kinetic energy of pulsatory motion and the equation
for the dissipation rate of kinetic energy 
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The boundary condition on the solid wall for vorticity can be determined from the Thom condition of
first order of accuracy [3]
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Numerical investigations showed that use of the Thom condition leads to results which are in good agreement
with the results obtained using the forms of second order of accuracy. On an inclined wall, a value for the
vortex was found by interpolation along the normal of the stream function and vorticity at the nearest nodes
of the computational grid. Introduction of the model term Mk into the equation of kinetic energy (2) allows
one to set the condition on the wall for the dissipation rate of kinetic energy as εw = 0. In the outlet cross
section of the considered region, the zero Neumann condition was introduced for all variables. At the inlet
boundary, uniform or constant values of the sought variables were assigned.

By virtue of the fact that the convective terms on the solid wall are equal to zero due to the adhesion
condition, the value of Ω at the angular point was found directly from the equation of vorticity transfer
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Methods for determination of the vortex at angular points are quite numerous. In [3], seven tech-
niques of formulation of such conditions are given. However, the approaches based on the determination of
Ω by arbitrary extrapolation by the values at interior points are incorrect and can lead to instability of solu-
tions. The technique suggested satisfies the equation of vortex transfer at an angular point and has second
order of accuracy when central differences are used. 

 The system of differential equations (1) was replaced by finite-difference analogs and was described
by central differences of second order of accuracy. The solution was found by the time-dependent technique
directions of variable [4].

Since the problem was solved for rather high Re numbers, to provide stability of the numerical solu-
tion and retain second order of accuracy of convective derivatives Shvab et al. [6] used the method of ori-
ented pseudoconvection, which, as an example for the vortex equation, can be represented in the following
form:
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As is shown in [5], on the first iterations the superposition of the difference representation of convection and
the introduced additive D is reduced to the known stable counterflow scheme. On the other hand, upon reach-
ing the convergence of the stationary solution, we have D(Ωi,j

n+1 − Ωi.j
n ) = 0.

As an example, Fig. 1 shows the working elements of the cyclone chamber (a) and the vortex cham-
ber with side injection (b) for which numerical calculations were made. To increase the accuracy of the so-
lution near solid surfaces with a limited number of nodes, we can use the analytical transformation of the
coordinates of the form r = z + (−1)m(1 − α) sin (π ⁄ z)/(π ⁄ z). As a result, we obtain a bunching difference
grid near the inlet boundary and the walls where the gradients of the sought functions are substantial. For α
= 1 the difference grid is uniform, and for α = 0 the grid has the greatest bunching. In the case where m is
odd, the bunching occurs only near one boundary; otherwise, the bunching is observed near two boundaries.

Fig. 1. Geometry of calculated chambers.
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The reliability of numerical calculations of the hydrodynamics of a twisted turbulent flow within the
considered geometries was based on comparison with experimental data. Figure 2 presents calculated and
measured [6] profiles of the mean circular and axial velocities in the cross section z ⁄ R0 = 0.9 for the vortex
chamber with side injection. The results obtained for Uϕ are in rather good agreement with measurements.
According to the experimental data, at the outlet boundary one must observe ejection of the gas from outside.
However, due to use of the semiempirical k−ε model of turbulence, divergence of the profiles of the axial
velocity Uz is observed. To describe this effect more accurately, it is necessary to use adequate models got
turbulent processes [7].

As an example, Fig. 3 shows the distribution of stream lines in the cyclone chamber. Large centrifu-
gal forces hold the incoming flow near the inclined side wall, and the descending flow is formed near it. Due
to the attenuation of twist near the base, motion of the medium toward the axis and the ascending flow di-
rectly to the outlet channel occur. A sharp change in the direction of the flow leads to the formation of the
vortex lying near the outlet and the occurrence of the zone of reverse flow near the inclined wall.

The developed method of numerical calculation of twisted turbulent flows is, on the one hand, rather
reliable, and, on the other hand, has performed well in optimization of operating-geometric parameters and in
development of new pneumatic centrifugal devices.

NOTATION
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; R0, radius of the vortex chamber; ν, kinematic viscosity; Ur0, mean-flow-rate-radial velocity at the

inlet to the chamber; Re = Ur02R0
 ⁄ ν, Reynolds number; t, time; νt, eddy viscosity; k, kinetic energy of tur-

bulence per unit mass; ε, dissipation rate of the kinetic energy of turbulence; fΩ, right-hand side of the equa-

tion of vorticity transfer; G, generation of the energy of pulsatory motion; σk, σε, Mk, Mε, Cµ, Cε1, and Cε2,

model terms; Rt, turbulent Reynolds number; n, time layer; m, exponent; S, twist parameter of the incoming

Fig. 2. Profiles of calculated and measured circular and axial velocities
in the vortex chamber with side injection (Re = 1470, S = 1.36): 1, 2)
Uϕ and Uz, experiment [6]; 3, 4) Uϕ and Uz, calculation.

Fig. 3. Distribution of streamlines for Re = 10,000 and S = 5.
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flow, S = Uϕ0
 ⁄ Ur0; D, additive in the method of oriented pseudoconvection; α, coefficient of bunching of the

computational grid; ∆r and ∆z, pitches along the axes; ∆t, time step. Subscripts: wr and wz, refer to the wall;
0, inlet cross section; i, numbering of points on the computational grid in the r direction; j, numbering of
points on the computational grid in the z direction; r, ϕ, z, directionfor the corresponding coordinate direc-
tions.
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